[ { "AP": 43.5, "PQ": 67.3, "PQst": 70.3, "PQth": 63.2, "mIoU": 82.1, "code_links": [ { "title": "DeepSceneSeg/EfficientPS", "url": "https://github.com/DeepSceneSeg/EfficientPS" } ], "date": "2020-04-05", "date2": 20200405, "model": "EfficientPS", "paper": { "title": "EfficientPS: Efficient Panoptic Segmentation", "url": "https://cknow.io/lib/848a0a0109b5849b" }, "paper_data_uoa": "848a0a0109b5849b" }, { "AP": 39.1, "PQ": 64.9, "PQst": 67.7, "PQth": 61, "mIoU": 90.3, "code_links": [ { "title": "DeepSceneSeg/EfficientPS", "url": "https://github.com/DeepSceneSeg/EfficientPS" } ], "date": "2020-04-05", "date2": 20200405, "model": "EfficientPS (Cityscapes-fine)", "paper": { "title": "EfficientPS: Efficient Panoptic Segmentation", "url": "https://cknow.io/lib/848a0a0109b5849b" }, "paper_data_uoa": "848a0a0109b5849b" }, { "AP": 38.5, "PQ": 64.1, "mIoU": 81.5, "code_links": [], "date": "2019-11-22", "date2": 20191122, "model": "Panoptic-DeepLab (X71)", "paper": { "title": "Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation", "url": "https://cknow.io/lib/cda2cfef402a881d" }, "paper_data_uoa": "cda2cfef402a881d" }, { "AP": 36.3, "PQ": 62, "PQst": 64.4, "PQth": 58.7, "mIoU": 79.2, "code_links": [ { "title": "saic-vul/adaptis", "url": "https://github.com/saic-vul/adaptis" } ], "date": "2019-09-17", "date2": 20190917, "model": "AdaptIS (ResNeXt-101)", "paper": { "title": "AdaptIS: Adaptive Instance Selection Network", "url": "https://cknow.io/lib/8c18f9a04b70af5c" }, "paper_data_uoa": "8c18f9a04b70af5c" }, { "AP": 39, "PQ": 61.8, "PQst": 64.8, "PQth": 57.6, "mIoU": 79.2, "code_links": [ { "title": "uber-research/UPSNet", "url": "https://github.com/uber-research/UPSNet" } ], "date": "2019-01-12", "date2": 20190112, "model": "UPSNet (ResNet-101, multiscale)", "paper": { "title": "UPSNet: A Unified Panoptic Segmentation Network", "url": "https://cknow.io/lib/e22fd496f9927ac8" }, "paper_data_uoa": "e22fd496f9927ac8" }, { "AP": 36.4, "PQ": 61.2, "PQst": 66.4, "PQth": 54, "code_links": [ { "title": "cocodataset/panopticapi", "url": "https://github.com/cocodataset/panopticapi" }, { "title": "DdeGeus/single-network-panoptic-segmentation", "url": "https://github.com/DdeGeus/single-network-panoptic-segmentation" }, { "title": "dhassault/panoptic_segmentation", "url": "https://github.com/dhassault/panoptic_segmentation" }, { "title": "kdethoor/panoptictorch", "url": "https://github.com/kdethoor/panoptictorch" } ], "date": "2018-01-03", "date2": 20180103, "model": "MRCNN + PSPNet (ResNet-101)", "paper": { "title": "Panoptic Segmentation", "url": "https://cknow.io/lib/4241a0d2cdca5ac7" }, "paper_data_uoa": "4241a0d2cdca5ac7" }, { "AP": 33.9, "PQ": 60.6, "PQst": 62.9, "PQth": 57.5, "mIoU": 77.2, "code_links": [ { "title": "saic-vul/adaptis", "url": "https://github.com/saic-vul/adaptis" } ], "date": "2019-09-17", "date2": 20190917, "model": "AdaptIS (ResNet-101)", "paper": { "title": "AdaptIS: Adaptive Instance Selection Network", "url": "https://cknow.io/lib/8c18f9a04b70af5c" }, "paper_data_uoa": "8c18f9a04b70af5c" }, { "AP": 37.8, "PQ": 60.5, "PQst": 63, "PQth": 57, "mIoU": 77.8, "code_links": [ { "title": "uber-research/UPSNet", "url": "https://github.com/uber-research/UPSNet" } ], "date": "2019-01-12", "date2": 20190112, "model": "UPSNet (ResNet-101)", "paper": { "title": "UPSNet: A Unified Panoptic Segmentation Network", "url": "https://cknow.io/lib/e22fd496f9927ac8" }, "paper_data_uoa": "e22fd496f9927ac8" }, { "AP": 39, "PQ": 60.4, "PQst": 63.3, "PQth": 56.1, "mIoU": 78, "code_links": [], "date": "2018-12-04", "date2": 20181204, "model": "TASCNet (ResNet-50, multi-scale)", "paper": { "title": "Learning to Fuse Things and Stuff", "url": "https://cknow.io/lib/cc58486d93f7a52f" }, "paper_data_uoa": "cc58486d93f7a52f" }, { "AP": 33.3, "PQ": 59.3, "PQst": 62.7, "PQth": 54.6, "mIoU": 75.2, "code_links": [ { "title": "uber-research/UPSNet", "url": "https://github.com/uber-research/UPSNet" } ], "date": "2019-01-12", "date2": 20190112, "model": "UPSNet (ResNet-50)", "paper": { "title": "UPSNet: A Unified Panoptic Segmentation Network", "url": "https://cknow.io/lib/e22fd496f9927ac8" }, "paper_data_uoa": "e22fd496f9927ac8" }, { "AP": 37.6, "PQ": 59.2, "PQst": 61.5, "PQth": 56, "mIoU": 77.8, "code_links": [], "date": "2018-12-04", "date2": 20181204, "model": "TASCNet (ResNet-50)", "paper": { "title": "Learning to Fuse Things and Stuff", "url": "https://cknow.io/lib/cc58486d93f7a52f" }, "paper_data_uoa": "cc58486d93f7a52f" }, { "AP": 34.4, "PQ": 59, "PQst": 62.1, "PQth": 54.8, "mIoU": 75.6, "code_links": [], "date": "2018-12-10", "date2": 20181210, "model": "AUNet (ResNet-101-FPN)", "paper": { "title": "Attention-guided Unified Network for Panoptic Segmentation", "url": "https://cknow.io/lib/46c2409a32044ebe" }, "paper_data_uoa": "46c2409a32044ebe" }, { "AP": 32.3, "PQ": 59, "PQst": 61.3, "PQth": 55.8, "mIoU": 75.3, "code_links": [ { "title": "saic-vul/adaptis", "url": "https://github.com/saic-vul/adaptis" } ], "date": "2019-09-17", "date2": 20190917, "model": "AdaptIS (ResNet-50)", "paper": { "title": "AdaptIS: Adaptive Instance Selection Network", "url": "https://cknow.io/lib/8c18f9a04b70af5c" }, "paper_data_uoa": "8c18f9a04b70af5c" }, { "AP": 33, "PQ": 58.1, "PQst": 62.5, "PQth": 52, "mIoU": 75.7, "code_links": [], "date": "2019-01-08", "date2": 20190108, "model": "Panoptic FPN (ResNet-101)", "paper": { "title": "Panoptic Feature Pyramid Networks", "url": "https://cknow.io/lib/63d860945e5b0b1a" }, "paper_data_uoa": "63d860945e5b0b1a" }, { "PQ": 56.5, "code_links": [], "date": "2019-02-13", "date2": 20190213, "model": "DeeperLab (Xception-71)", "paper": { "title": "DeeperLab: Single-Shot Image Parser", "url": "https://cknow.io/lib/30359e304e288986" }, "paper_data_uoa": "30359e304e288986" }, { "AP": 28.6, "PQ": 53.8, "PQst": 62.1, "PQth": 42.5, "mIoU": 79.8, "code_links": [ { "title": "qizhuli/Weakly-Supervised-Panoptic-Segmentation", "url": "https://github.com/qizhuli/Weakly-Supervised-Panoptic-Segmentation" } ], "date": "2018-08-10", "date2": 20180810, "model": "Dynamically Instantiated Network (ResNet-101)", "paper": { "title": "Weakly- and Semi-Supervised Panoptic Segmentation", "url": "https://cknow.io/lib/8a8cf802567c4d0e" }, "paper_data_uoa": "8a8cf802567c4d0e" } ]