[ { "PQ": 47.8, "code_links": [ { "title": "LaoYang1994/SOGNet", "url": "https://github.com/LaoYang1994/SOGNet" } ], "date": "2019-11-18", "date2": 20191118, "model": "SOGNet (ResNet-101-FPN)", "paper": { "title": "SOGNet: Scene Overlap Graph Network for Panoptic Segmentation", "url": "https://cknow.io/lib/25866398e88c49c7" }, "paper_data_uoa": "25866398e88c49c7" }, { "PQ": 46.6, "PQst": 35.7, "PQth": 54, "code_links": [], "date": "2019-06-13", "date2": 20190613, "model": "OCFusion (ResNeXt-101-FPN)", "paper": { "title": "Learning Instance Occlusion for Panoptic Segmentation", "url": "https://cknow.io/lib/39c004f82acca2c8" }, "paper_data_uoa": "39c004f82acca2c8" }, { "PQ": 46.6, "PQst": 36.7, "PQth": 53.2, "code_links": [ { "title": "uber-research/UPSNet", "url": "https://github.com/uber-research/UPSNet" } ], "date": "2019-01-12", "date2": 20190112, "model": "UPSNet (ResNet-101-FPN)", "paper": { "title": "UPSNet: A Unified Panoptic Segmentation Network", "url": "https://cknow.io/lib/e22fd496f9927ac8" }, "paper_data_uoa": "e22fd496f9927ac8" }, { "PQ": 46.5, "PQst": 32.5, "PQth": 55.8, "code_links": [], "date": "2018-12-10", "date2": 20181210, "model": "AUNet (ResNeXt-152-FPN)", "paper": { "title": "Attention-guided Unified Network for Panoptic Segmentation", "url": "https://cknow.io/lib/46c2409a32044ebe" }, "paper_data_uoa": "46c2409a32044ebe" }, { "PQ": 45.5, "PQst": 31.6, "PQth": 54.7, "code_links": [], "date": "2018-12-10", "date2": 20181210, "model": "AUNet (ResNet-152-FPN)", "paper": { "title": "Attention-guided Unified Network for Panoptic Segmentation", "url": "https://cknow.io/lib/46c2409a32044ebe" }, "paper_data_uoa": "46c2409a32044ebe" }, { "PQ": 45.2, "PQst": 31.3, "PQth": 54.4, "code_links": [], "date": "2018-12-10", "date2": 20181210, "model": "AUNet (ResNet-101-FPN)", "paper": { "title": "Attention-guided Unified Network for Panoptic Segmentation", "url": "https://cknow.io/lib/46c2409a32044ebe" }, "paper_data_uoa": "46c2409a32044ebe" }, { "PQ": 42.8, "PQst": 31.8, "PQth": 50.1, "code_links": [ { "title": "saic-vul/adaptis", "url": "https://github.com/saic-vul/adaptis" } ], "date": "2019-09-17", "date2": 20190917, "model": "AdaptIS (ResNeXt-101)", "paper": { "title": "AdaptIS: Adaptive Instance Selection Network", "url": "https://cknow.io/lib/8c18f9a04b70af5c" }, "paper_data_uoa": "8c18f9a04b70af5c" }, { "PQ": 41.4, "PQst": 35.9, "PQth": 45.1, "code_links": [], "date": "2019-11-22", "date2": 20191122, "model": "Panoptic-DeepLab (Xception-71)", "paper": { "title": "Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation", "url": "https://cknow.io/lib/cda2cfef402a881d" }, "paper_data_uoa": "cda2cfef402a881d" }, { "PQ": 38.9, "PQst": 44.1, "PQth": 31, "code_links": [], "date": "2020-03-23", "date2": 20200323, "model": "EPSNet (ResNet-101-FPN)", "paper": { "title": "EPSNet: Efficient Panoptic Segmentation Network with Cross-layer Attention Fusion", "url": "https://cknow.io/lib/3a2168158ccf8449" }, "paper_data_uoa": "3a2168158ccf8449" }, { "PQ": 37.7, "PQst": 33.1, "PQth": 40.7, "code_links": [], "date": "2020-04-04", "date2": 20200404, "model": "PCV (ResNet-50)", "paper": { "title": "Pixel Consensus Voting for Panoptic Segmentation", "url": "https://cknow.io/lib/499c44d796339702" }, "paper_data_uoa": "499c44d796339702" }, { "PQ": 27.2, "code_links": [], "date": "2018-09-06", "date2": 20180906, "model": "JSIS-Net (ResNet-50)", "paper": { "title": "Panoptic Segmentation with a Joint Semantic and Instance Segmentation Network", "url": "https://cknow.io/lib/8d4c348929cf3fc5" }, "paper_data_uoa": "8d4c348929cf3fc5" } ]