[ { "AUC": 0.8174, "code_links": [ { "title": "shenweichen/DeepCTR", "url": "https://github.com/shenweichen/DeepCTR" }, { "title": "shenweichen/DeepCTR-PyTorch", "url": "https://github.com/shenweichen/DeepCTR-PyTorch" }, { "title": "Atomu2014/product-nets", "url": "https://github.com/Atomu2014/product-nets" }, { "title": "JianzhouZhan/Awesome-RecSystem-Models", "url": "https://github.com/JianzhouZhan/Awesome-RecSystem-Models" }, { "title": "Atomu2014/product-nets-distributed", "url": "https://github.com/Atomu2014/product-nets-distributed" } ], "date": "2016-11-01", "date2": 20161101, "model": "OPNN", "paper": { "title": "Product-based Neural Networks for User Response Prediction", "url": "https://cknow.io/lib/364060b7695d2cc2" }, "paper_data_uoa": "364060b7695d2cc2" }, { "AUC": 0.7914, "code_links": [ { "title": "shenweichen/DeepCTR", "url": "https://github.com/shenweichen/DeepCTR" }, { "title": "shenweichen/DeepCTR-PyTorch", "url": "https://github.com/shenweichen/DeepCTR-PyTorch" }, { "title": "Atomu2014/product-nets", "url": "https://github.com/Atomu2014/product-nets" }, { "title": "JianzhouZhan/Awesome-RecSystem-Models", "url": "https://github.com/JianzhouZhan/Awesome-RecSystem-Models" }, { "title": "Atomu2014/product-nets-distributed", "url": "https://github.com/Atomu2014/product-nets-distributed" } ], "date": "2016-11-01", "date2": 20161101, "model": "IPNN", "paper": { "title": "Product-based Neural Networks for User Response Prediction", "url": "https://cknow.io/lib/364060b7695d2cc2" }, "paper_data_uoa": "364060b7695d2cc2" }, { "AUC": 0.7661, "code_links": [ { "title": "shenweichen/DeepCTR", "url": "https://github.com/shenweichen/DeepCTR" }, { "title": "shenweichen/DeepCTR-PyTorch", "url": "https://github.com/shenweichen/DeepCTR-PyTorch" }, { "title": "Atomu2014/product-nets", "url": "https://github.com/Atomu2014/product-nets" }, { "title": "JianzhouZhan/Awesome-RecSystem-Models", "url": "https://github.com/JianzhouZhan/Awesome-RecSystem-Models" }, { "title": "Atomu2014/product-nets-distributed", "url": "https://github.com/Atomu2014/product-nets-distributed" } ], "date": "2016-11-01", "date2": 20161101, "model": "PNN*", "paper": { "title": "Product-based Neural Networks for User Response Prediction", "url": "https://cknow.io/lib/364060b7695d2cc2" }, "paper_data_uoa": "364060b7695d2cc2" }, { "AUC": 0.7619, "code_links": [ { "title": "shenweichen/DeepCTR", "url": "https://github.com/shenweichen/DeepCTR" }, { "title": "shenweichen/DeepCTR-PyTorch", "url": "https://github.com/shenweichen/DeepCTR-PyTorch" }, { "title": "wnzhang/deep-ctr", "url": "https://github.com/wnzhang/deep-ctr" }, { "title": "ddatta-DAC/Learning", "url": "https://github.com/ddatta-DAC/Learning" } ], "date": "2016-01-11", "date2": 20160111, "model": "FNN", "paper": { "title": "Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction", "url": "https://cknow.io/lib/9e5d5ca4ffb9ff3f" }, "paper_data_uoa": "9e5d5ca4ffb9ff3f" } ]