[ { "mIoU": 58.8, "code_links": [ { "title": "HuguesTHOMAS/KPConv", "url": "https://github.com/HuguesTHOMAS/KPConv" }, { "title": "XuyangBai/KPConv.pytorch", "url": "https://github.com/XuyangBai/KPConv.pytorch" } ], "date": "2019-04-18", "date2": 20190418, "model": "KPConv", "paper": { "title": "KPConv: Flexible and Deformable Convolution for Point Clouds", "url": "https://cknow.io/lib/e7fc258dfd4026a6" }, "paper_data_uoa": "e7fc258dfd4026a6" }, { "mIoU": 55.9, "code_links": [ { "title": "chenfengxu714/SqueezeSegV3", "url": "https://github.com/chenfengxu714/SqueezeSegV3" } ], "date": "2020-04-03", "date2": 20200403, "model": "SqueezeSegV3", "paper": { "title": "SqueezeSegV3: Spatially-Adaptive Convolution for Efficient Point-Cloud Segmentation", "url": "https://cknow.io/lib/31bc14728174c768" }, "paper_data_uoa": "31bc14728174c768" }, { "mIoU": 55.8, "code_links": [ { "title": "Shathe/3D-MiniNet", "url": "https://github.com/Shathe/3D-MiniNet" } ], "date": "2020-02-25", "date2": 20200225, "model": "3D-MiniNet", "paper": { "title": "3D-MiniNet: Learning a 2D Representation from Point Clouds for Fast and Efficient 3D LIDAR Semantic Segmentation", "url": "https://cknow.io/lib/249d488a9ab6bfee" }, "paper_data_uoa": "249d488a9ab6bfee" }, { "mIoU": 54.5, "code_links": [], "date": "2020-03-07", "date2": 20200307, "model": "SalsaNext", "paper": { "title": "SalsaNext: Fast Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving", "url": "https://cknow.io/lib/24ebe974c1623d62" }, "paper_data_uoa": "24ebe974c1623d62" }, { "mIoU": 54.3, "code_links": [ { "title": "edwardzhou130/PolarSeg", "url": "https://github.com/edwardzhou130/PolarSeg" } ], "date": "2020-03-31", "date2": 20200331, "model": "PolarNet", "paper": { "title": "PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation", "url": "https://cknow.io/lib/f3a2e3f6410798eb" }, "paper_data_uoa": "f3a2e3f6410798eb" }, { "mIoU": 53.9, "code_links": [ { "title": "QingyongHu/RandLA-Net", "url": "https://github.com/QingyongHu/RandLA-Net" } ], "date": "2019-11-25", "date2": 20191125, "model": "RandLA-Net", "paper": { "title": "RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds", "url": "https://cknow.io/lib/17f3b347b5ac0a5c" }, "paper_data_uoa": "17f3b347b5ac0a5c" }, { "mIoU": 52.9, "code_links": [], "date": "2019-12-12", "date2": 20191212, "model": "LatticeNet", "paper": { "title": "LatticeNet: Fast Point Cloud Segmentation Using Permutohedral Lattices", "url": "https://cknow.io/lib/5dab143c6ba1998d" }, "paper_data_uoa": "5dab143c6ba1998d" }, { "mIoU": 52.2, "code_links": [ { "title": "PRBonn/lidar-bonnetal", "url": "https://github.com/PRBonn/lidar-bonnetal" } ], "date": "2019-11-04", "date2": 20191104, "model": "RangeNet++", "paper": { "title": "RangeNet++: Fast and Accurate LiDAR Semantic Segmentation", "url": "https://cknow.io/lib/a14528af1f4f828e" }, "paper_data_uoa": "a14528af1f4f828e" }, { "mIoU": 40.9, "code_links": [ { "title": "tatarchm/tangent_conv", "url": "https://github.com/tatarchm/tangent_conv" } ], "date": "2018-07-06", "date2": 20180706, "model": "TagentConv", "paper": { "title": "Tangent Convolutions for Dense Prediction in 3D", "url": "https://cknow.io/lib/0d91c14b30b7f711" }, "paper_data_uoa": "0d91c14b30b7f711" }, { "mIoU": 39.7, "code_links": [ { "title": "xuanyuzhou98/SqueezeSegV2", "url": "https://github.com/xuanyuzhou98/SqueezeSegV2" } ], "date": "2018-09-22", "date2": 20180922, "model": "SqueezeSegV2", "paper": { "title": "SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiDAR Point Cloud", "url": "https://cknow.io/lib/27d0f8224f644c18" }, "paper_data_uoa": "27d0f8224f644c18" }, { "mIoU": 29.5, "code_links": [ { "title": "BichenWuUCB/SqueezeSeg", "url": "https://github.com/BichenWuUCB/SqueezeSeg" }, { "title": "xuanyuzhou98/SqueezeSegV2", "url": "https://github.com/xuanyuzhou98/SqueezeSegV2" }, { "title": "priyankanagaraj1494/Squeezseg", "url": "https://github.com/priyankanagaraj1494/Squeezseg" }, { "title": "xuanyuzhou98/SqueezeSeg", "url": "https://github.com/xuanyuzhou98/SqueezeSeg" }, { "title": "adrshm91/SqueezeSeg", "url": "https://github.com/adrshm91/SqueezeSeg" } ], "date": "2017-10-19", "date2": 20171019, "model": "SqueezeSeg", "paper": { "title": "SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud", "url": "https://cknow.io/lib/6d294e2381b7639a" }, "paper_data_uoa": "6d294e2381b7639a" }, { "mIoU": 20.1, "code_links": [ { "title": "charlesq34/pointnet2", "url": "https://github.com/charlesq34/pointnet2" }, { "title": "facebookresearch/votenet", "url": "https://github.com/facebookresearch/votenet" }, { "title": "erikwijmans/Pointnet2_PyTorch", "url": "https://github.com/erikwijmans/Pointnet2_PyTorch" }, { "title": "sshaoshuai/Pointnet2.PyTorch", "url": "https://github.com/sshaoshuai/Pointnet2.PyTorch" }, { "title": "pqhieu/torch3d", "url": "https://github.com/pqhieu/torch3d" }, { "title": "liuxinhai/Point2Sequence", "url": "https://github.com/liuxinhai/Point2Sequence" }, { "title": "hehefan/PointRNN-PyTorch", "url": "https://github.com/hehefan/PointRNN-PyTorch" }, { "title": "LinZhuoChen/pointnet2_multi_gpu", "url": "https://github.com/LinZhuoChen/pointnet2_multi_gpu" }, { "title": "ftdlyc/pointnet_pytorch", "url": "https://github.com/ftdlyc/pointnet_pytorch" }, { "title": "shaygu62/Protein-Classification", "url": "https://github.com/shaygu62/Protein-Classification" }, { "title": "houseleo/pointnet", "url": "https://github.com/houseleo/pointnet" }, { "title": "witignite/Frustum-PointNet", "url": "https://github.com/witignite/Frustum-PointNet" }, { "title": "tonysy/pointnet2_tf", "url": "https://github.com/tonysy/pointnet2_tf" }, { "title": "xurui1217/pointnet2-master", "url": "https://github.com/xurui1217/pointnet2-master" }, { "title": "wangsc1912/mywork", "url": "https://github.com/wangsc1912/mywork" }, { "title": "brbzjl/pointnet2", "url": "https://github.com/brbzjl/pointnet2" }, { "title": "lijinglezhang/pointnet-_modify", "url": "https://github.com/lijinglezhang/pointnet-_modify" }, { "title": "Lw510107/PointNet", "url": "https://github.com/Lw510107/PointNet" }, { "title": "RyoOtsu/PointNet-", "url": "https://github.com/RyoOtsu/PointNet-" } ], "date": "2017-06-07", "date2": 20170607, "model": "PointNet++", "paper": { "title": "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space", "url": "https://cknow.io/lib/a8e4df6520deb619" }, "paper_data_uoa": "a8e4df6520deb619" }, { "mIoU": 18.4, "code_links": [ { "title": "NVlabs/splatnet", "url": "https://github.com/NVlabs/splatnet" }, { "title": "IsaacRe/splatnet", "url": "https://github.com/IsaacRe/splatnet" } ], "date": "2018-02-22", "date2": 20180222, "model": "SPLATNet", "paper": { "title": "SPLATNet: Sparse Lattice Networks for Point Cloud Processing", "url": "https://cknow.io/lib/dbd2858aad35d2c5" }, "paper_data_uoa": "dbd2858aad35d2c5" }, { "mIoU": 17.4, "code_links": [ { "title": "loicland/superpoint_graph", "url": "https://github.com/loicland/superpoint_graph" }, { "title": "jsgaobiao/superpoint_graph", "url": "https://github.com/jsgaobiao/superpoint_graph" } ], "date": "2017-11-27", "date2": 20171127, "model": "SPGraph", "paper": { "title": "Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs", "url": "https://cknow.io/lib/c4ae982d9fc33006" }, "paper_data_uoa": "c4ae982d9fc33006" }, { "mIoU": 14.6, "code_links": [ { "title": "charlesq34/pointnet", "url": "https://github.com/charlesq34/pointnet" }, { "title": "fxia22/pointnet.pytorch", "url": "https://github.com/fxia22/pointnet.pytorch" }, { "title": "maggie0106/Graph-CNN-in-3D-Point-Cloud-Classification", "url": "https://github.com/maggie0106/Graph-CNN-in-3D-Point-Cloud-Classification" }, { "title": "pqhieu/torch3d", "url": "https://github.com/pqhieu/torch3d" }, { "title": "DylanWusee/pointconv_pytorch", "url": "https://github.com/DylanWusee/pointconv_pytorch" }, { "title": "seowok/TreeGAN", "url": "https://github.com/seowok/TreeGAN" }, { "title": "ZhihaoZhu/PointNet-Implementation-Tensorflow", "url": "https://github.com/ZhihaoZhu/PointNet-Implementation-Tensorflow" }, { "title": "sarthakTUM/roofn3d", "url": "https://github.com/sarthakTUM/roofn3d" }, { "title": "romaintha/pytorch_pointnet", "url": "https://github.com/romaintha/pytorch_pointnet" }, { "title": "YanWei123/PointNet-encoder-and-FoldingNet-decoder-add-quantization-change-latent-code-size-from-512-to-1024", "url": "https://github.com/YanWei123/PointNet-encoder-and-FoldingNet-decoder-add-quantization-change-latent-code-size-from-512-to-1024" }, { "title": "AI-Guru/pointcloud_experiments", "url": "https://github.com/AI-Guru/pointcloud_experiments" }, { "title": "YanWei123/Pytorch-implementation-of-FoldingNet-encoder-and-decoder-with-graph-pooling-covariance-add-quanti", "url": "https://github.com/YanWei123/Pytorch-implementation-of-FoldingNet-encoder-and-decoder-with-graph-pooling-covariance-add-quanti" }, { "title": "ftdlyc/pointnet_pytorch", "url": "https://github.com/ftdlyc/pointnet_pytorch" }, { "title": "abdullahozer11/Segmentation-and-Classification-of-Objects-in-Point-Clouds", "url": "https://github.com/abdullahozer11/Segmentation-and-Classification-of-Objects-in-Point-Clouds" }, { "title": "PaParaZz1/PointNet", "url": "https://github.com/PaParaZz1/PointNet" }, { "title": "zgx0534/pointnet_win", "url": "https://github.com/zgx0534/pointnet_win" }, { "title": "alpemek/ais3d", "url": "https://github.com/alpemek/ais3d" }, { "title": "yanxp/PointNet", "url": "https://github.com/yanxp/PointNet" }, { "title": "witignite/Frustum-PointNet", "url": "https://github.com/witignite/Frustum-PointNet" }, { "title": "coconutzs/PointNet_zs", "url": "https://github.com/coconutzs/PointNet_zs" }, { "title": "Fnjn/UCSD-CSE-291I", "url": "https://github.com/Fnjn/UCSD-CSE-291I" }, { "title": "Lw510107/pointnet-2018.6.27-", "url": "https://github.com/Lw510107/pointnet-2018.6.27-" }, { "title": "minhncedutw/pointnet1_keras", "url": "https://github.com/minhncedutw/pointnet1_keras" }, { "title": "xurui1217/pointnet.pytorch-master", "url": "https://github.com/xurui1217/pointnet.pytorch-master" }, { "title": "sanantoniochili/PointCloud_KNN", "url": "https://github.com/sanantoniochili/PointCloud_KNN" }, { "title": "hnVfly/pointnet.mxnet", "url": "https://github.com/hnVfly/pointnet.mxnet" }, { "title": "LebronGG/PointNet", "url": "https://github.com/LebronGG/PointNet" }, { "title": "ahmed-anas/thesis-pointnet", "url": "https://github.com/ahmed-anas/thesis-pointnet" }, { "title": "GOD-GOD-Autonomous-Vehicle/self-pointnet", "url": "https://github.com/GOD-GOD-Autonomous-Vehicle/self-pointnet" }, { "title": "freddieee/pn_6d_single", "url": "https://github.com/freddieee/pn_6d_single" }, { "title": "CheesyB/cpointnet", "url": "https://github.com/CheesyB/cpointnet" }, { "title": "ModelBunker/PointNet-TensorFlow", "url": "https://github.com/ModelBunker/PointNet-TensorFlow" }, { "title": "aviros/pointnet_totations", "url": "https://github.com/aviros/pointnet_totations" }, { "title": "Taeuk-Jang/pointcompletion", "url": "https://github.com/Taeuk-Jang/pointcompletion" }, { "title": "ytng001/sensemaking", "url": "https://github.com/ytng001/sensemaking" }, { "title": "YanWei123/Pointnet_encoder_Foldingnet_decoder_quantization", "url": "https://github.com/YanWei123/Pointnet_encoder_Foldingnet_decoder_quantization" }, { "title": "ajertec/PointNetKeras", "url": "https://github.com/ajertec/PointNetKeras" }, { "title": "nikitakaraevv/pointnet", "url": "https://github.com/nikitakaraevv/pointnet" }, { "title": "amyllykoski/CycleGAN", "url": "https://github.com/amyllykoski/CycleGAN" }, { "title": "lingzhang1/pointnet_tensorflow", "url": "https://github.com/lingzhang1/pointnet_tensorflow" }, { "title": "lingzhang1/pointnet_pytorch", "url": "https://github.com/lingzhang1/pointnet_pytorch" }, { "title": "Yuto0107/pointnet", "url": "https://github.com/Yuto0107/pointnet" } ], "date": "2016-12-02", "date2": 20161202, "model": "PointNet", "paper": { "title": "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation", "url": "https://cknow.io/lib/735c32c4a9cba5e5" }, "paper_data_uoa": "735c32c4a9cba5e5" } ]