[ { "MRR": 0.861, "P@1": 0.753, "code_links": [ { "title": "seraphlabs-ca/SentenceMIM-demo", "url": "https://github.com/seraphlabs-ca/SentenceMIM-demo" } ], "date": "2020-02-18", "date2": 20200218, "model": "sMIM (1024) +", "paper": { "title": "SentenceMIM: A Latent Variable Language Model", "url": "https://cknow.io/lib/44829a1227c742fb" }, "paper_data_uoa": "44829a1227c742fb" }, { "MRR": 0.818, "P@1": 0.683, "code_links": [ { "title": "seraphlabs-ca/SentenceMIM-demo", "url": "https://github.com/seraphlabs-ca/SentenceMIM-demo" } ], "date": "2020-02-18", "date2": 20200218, "model": "sMIM (1024)", "paper": { "title": "SentenceMIM: A Latent Variable Language Model", "url": "https://cknow.io/lib/44829a1227c742fb" }, "paper_data_uoa": "44829a1227c742fb" }, { "MRR": 0.801, "P@1": 0.683, "code_links": [ { "title": "vanzytay/WSDM2018_HyperQA", "url": "https://github.com/vanzytay/WSDM2018_HyperQA" } ], "date": "2017-07-25", "date2": 20170725, "model": "HyperQA", "paper": { "title": "Hyperbolic Representation Learning for Fast and Efficient Neural Question Answering", "url": "https://cknow.io/lib/4c5192e04e1ebafb" }, "paper_data_uoa": "4c5192e04e1ebafb" }, { "MRR": 0.731, "P@1": 0.568, "code_links": [], "date": "2016-02-11", "date2": 20160211, "model": "AP-BiLSTM", "paper": { "title": "Attentive Pooling Networks", "url": "https://cknow.io/lib/e0ac4c14b54eb88c" }, "paper_data_uoa": "e0ac4c14b54eb88c" }, { "MRR": 0.726, "P@1": 0.56, "code_links": [], "date": "2016-02-11", "date2": 20160211, "model": "AP-CNN", "paper": { "title": "Attentive Pooling Networks", "url": "https://cknow.io/lib/e0ac4c14b54eb88c" }, "paper_data_uoa": "e0ac4c14b54eb88c" }, { "MRR": 0.669, "P@1": 0.465, "code_links": [ { "title": "vanzytay/WSDM2018_HyperQA", "url": "https://github.com/vanzytay/WSDM2018_HyperQA" } ], "date": "2017-07-25", "date2": 20170725, "model": "LSTM", "paper": { "title": "Hyperbolic Representation Learning for Fast and Efficient Neural Question Answering", "url": "https://cknow.io/lib/4c5192e04e1ebafb" }, "paper_data_uoa": "4c5192e04e1ebafb" }, { "MRR": 0.632, "P@1": 0.413, "code_links": [ { "title": "vanzytay/WSDM2018_HyperQA", "url": "https://github.com/vanzytay/WSDM2018_HyperQA" } ], "date": "2017-07-25", "date2": 20170725, "model": "CNN", "paper": { "title": "Hyperbolic Representation Learning for Fast and Efficient Neural Question Answering", "url": "https://cknow.io/lib/4c5192e04e1ebafb" }, "paper_data_uoa": "4c5192e04e1ebafb" } ]